СБОР И УДАЛЕНИЕ ВОЗДУХА ИЗ СИСТЕМЫ ОТОПЛЕНИЯ
В системах центрального отопления, особенно водяного, скопления воздуха (точнее газов) нарушают циркуляцию теплоносителя, вызывают шум в арматуре и коррозию стали. Воздух в системы отопления попадает различными путями: частично остается в свободном состоянии при заполнении их теплоносителем; подсасывается в процессе эксплуатации неправильно сконструированной системы; вносится водой при заполнении и эксплуатации в растворенном (точнее, в поглощенном, абсорбированном) виде.
Количество свободного воздуха, остающегося в трубах и приборах при их заполнении, не поддается учету, но этот воздух в правильно сконструированных системах удаляется в течение нескольких дней эксплуатации.
Подсоса воздуха можно избежать путем создания избыточного давления в неблагоприятных точках системы.
Количество растворенного воздуха, вводимого в системы при периодических добавках воды в процессе эксплуатации, определяется в зависимости от содержания воздуха в подпиточной воде. В 1 т холодной водопроводной воды может содержаться свыше 30 г воздуха, в подпиточной деаэрированной воде из теплофикационной сети — менее 1 г, поэтому всегда следует стремиться к заполнению и подпитке систем отопления деаэрированной водой.
Количество растворенного воздуха, переходящего в свободное состояние, зависит от температуры и давления в системах отопления.
Повышение температуры воды и понижение гидростатического давления сопровождаются переходом абсорбированного воздуха в свободное состояние. Следовательно, в верхних частях систем водяного отопления, где горячая вода находится под пониженным давлением, должно выделяться наибольшее количество воздуха. В нижних частях систем при высоком гидростатическом давлении воздух содержится только в растворенном виде.
Воздух в свободном состоянии занимает в системах отопления значительный объем. Например, в системе, заполненной 7 м3 водопроводной воды, воздух, выделяющийся при нагревании воды от 5 до 95°С, имеет объем 0, 22 м3. Такой объем воздуха может образовать в трубе диаметром 50 мм «пробку» длиной около 100 м, которая полностью нарушит циркуляцию воды в системе.
При эксплуатации систем отопления, заполненных деаэрированной водой, в течение отопительного сезона могут появиться значительные скопления водорода. В воде происходит медленная ионная химическая реакция с образованием гидрата закиси железа Fe(OH)2, который затем превращается в окалину — магнетит Fe3О4 (осадок, имеющий вид черных частичек) с выделением водорода. При коррозии, например, 1 см3 железа выделяется 1 л водорода.
Эти примеры подтверждают необходимость удаления газов из систем водяного отопления. Следует, кроме того, отметить, что растворенный в воде воздух содержит около 33 % кислорода, поэтому «водяной» воздух более опасен в коррозионном отношении для стальных труб, чем атмосферный, в котором содержится около 21 % кислорода.
В вертикальных водяных трубах пузырьки воздуха могут всплывать, находиться во взвешенном состоянии — «витать» (скорость движения воды при этом называют скоростью витания) и, наконец, увлекаться потоком воды вниз.
В горизонтальных и наклонных водяных трубах пузырьки воздуха занимают верхнее положение. Мельчайшие пузырьки задерживаются в нишах шероховатой поверхности труб. Более крупные пузырьки (объемом 0, 1 см3 и более) в зависимости от уклона труб и скорости движения воды как бы катятся вдоль «потолочной» поверхности труб в виде прерывистой ленты. С увеличением скорости движения воды до 0, 6 м/с начинается дробление воздушных скоплений; пузырьки воздуха в верхней части труб, отрываясь от их поверхности, двигаются по криволинейным траекториям. При скорости движения воды более 1 м/с мелкие пузырьки постепенно распространяются по всему сечению труб — возникает водовоздушная эмульсия.
Скорость витания в системах водяного отопления; в вертикальных трубах 0, 20-0, 25 м/с, в наклонных и горизонтальных трубах 0, 10-0, 15 м/с. Скорость всплывания пузырьков воздуха в воде не превышает скорости витания.
Проследим за состоянием воздуха и образованием воздушных скоплений в вертикальных системах водяного отопления.
Воздух переходит из растворенного состояния в свободное по мере уменьшения гидростатического давления в верхних частях систем отопления: в главном стояке — при верхней разводке, в отдельных стояках—при нижней. Свободный воздух движется по течению или против течения в зависимости от скорости потока воды и уклона труб. Воздух собирается в высших точках систем. При высокой скорости движения воды воздух захватывается потоком и по мере понижения температуры и повышения гидростатического давления в нижних частях систем вновь абсорбируется водой.
Теперь можно установить совокупность мероприятий для сбора воздуха в системах водяного отопления. При верхней разводке обеспечивают движение свободного воздуха к точкам его сбора. Точки сбора воздуха (и удаления его в атмосферу) выбирают в наиболее высоко расположенных местах систем. Предусматривают снижение скорости движения воды в точках сбора воздуха до значений менее 0, 10 м/с. При движении воды с пониженной скоростью пузырьки воздуха всплывают и скапливаются для последующего его удаления.
К таким мероприятиям относятся прокладка труб с определенным уклоном в желательном направлении и установка проточных воздухосборников: вертикальных или горизонтальных.
Длина горизонтальных воздухосборников должна в 2—2, 5 раза превышать их диаметр. Из воздухосборников воздух удаляется в атмосферу периодически с помощью ручных кранов или автоматических воздухоотводчиков.
В большинстве известных конструкций автоматических воздухоотводчиков поплавково-клапанного типа используется внутреннее гидростатическое давление для закрывания клапана (прижимания золотника клапана к седлу воздушной трубки) и вес поплавка для его открывания. Поступающая в корпус вода поднимает поплавок и с помощью пружины клапан закрывается.
При нижней разводке воздух, собирающийся в радиаторах или в греющих трубах конвекторов, находящихся в верхней части систем, удаляется в атмосферу периодически с помощью ручных и автоматических воздушных кранов или централизованно через специальную воздушную трубу.
При централизованном воздухоудалении воздушные трубы стояков объединяются горизонтальной воздушной линией с воздушной петлей для устранения циркуляции воды в воздушной линии. Для периодического выпуска воздуха в воздушной петле помещают вертикальный воздухосборник. Для непрерывного удаления воздуха воздушную петлю присоединяют к одной из соединительных труб открытого расширительного бака.
Особенно важны мероприятия по сбору и удалению воздуха при восполнении потерь воды в системах отопления водопроводной водой. В этом случае при нижнем расположении магистралей радиаторы на верхнем этаже следует присоединять по схеме снизу — вниз, или применять централизованное удаление воздуха.
При подпитке систем отопления деаэрированной водой можно добиться уноса воздуха из приборов и труб путем повышения скорости движения воды до 0, 30 м/с и более. Это осуществимо в однотрубных системах с присоединением труб к отопительным приборам на верхнем этаже по схеме сверху — вниз. Поглощение воздуха водой протекает сравнительно быстро в отопительных приборах на нижних этажах зданий, где растворимость воздуха возрастает благодаря увеличению гидростатического давления. По наблюдениям процесс обезвоздушивания радиаторов, присоединенных к трубам по схеме снизу — вниз, при значительном гидростатическом давлении практически заканчивается в течение 2—3 сут без открывания воздушных кранов. Поэтому при обеспечении достаточной растворимости воздуха трубы можно присоединять к приборам по схеме, способствующей повышению плотности теплового потока приборов.
В вертикальных однотрубных системах многоэтажных зданий с П-образными и бифилярными стояками наверху каждого стояка можно устанавливать только один воздушный кран и пользоваться им только при спуске воды из стояка. При наполнении же системы воздух можно удалять в основании нисходящей части стояков путем выдавливания его водой.
В системах парового отопления воздух находится в свободном состоянии. В паропроводах пар вытесняет воздух в нижние части систем к конденсатным трубам. Удельный вес воздуха приблизительно в 1, 6 раза больше, чем удельный вес пара: при температуре 100 °С соотношение составляет 9 Н/м3 (0, 92 кгс/м3) к 5, 7 Н/м3 (0, 58 кгс/м3), чем объясняется скопление воздуха над поверхностью конденсата. Так как растворимость воздуха в конденсате незначительная из-за высокой температуры конденсата, воздух остается в свободном состоянии.
В горизонтальных и наклонных самотечных конденсатных трубах воздух перемещается над уровнем конденсата, в напорных конденсатных трубах — в виде пузырьков и водовоздушной эмульсии. В паровых системах низкого давления воздух удаляют в атмосферу через специальные воздушные трубы.
В паровых системах высокого давления воздух захватывается конденсатом, движущимся с высокой скоростью. Водовоздушная эмульсия по трубам попадает в закрытый конденсатный бак, где воздух отделяется от конденсата и периодически отводится в атмосферу через специальную воздушную трубу.
Подписаться в телеграм: https://t.me/gidroraschet
Все о дачном доме Водоснабжение Обучающий курс. Автоматическое водоснабжение своими руками. Для чайников. Неисправности скважинной автоматической системы водоснабжения. Водозаборные скважины Ремонт скважины? Узнайте нужен ли он! Где бурить скважину - снаружи или внутри? В каких случаях очистка скважины не имеет смысла Почему в скважинах застревают насосы и как это предотвратить Прокладка трубопровода от скважины до дома 100% Защита насоса от сухого хода Отопление Обучающий курс. Водяной теплый пол своими руками. Для чайников. Теплый водяной пол под ламинат Обучающий Видеокурс: По ГИДРАВЛИЧЕСКИМ И ТЕПЛОВЫМ РАСЧЕТАМ Водяное отопление Виды отопления Отопительные системы Отопительное оборудование, отопительные батареи Система теплых полов Личная статья теплых полов Принцип работы и схема работы теплого водяного пола Проектирование и монтаж теплого пола Водяной теплый пол своими руками Основные материалы для теплого водяного пола Технология монтажа водяного теплого пола Система теплых полов Шаг укладки и способы укладки теплого пола Типы водных теплых полов Все о теплоносителях Антифриз или вода? Виды теплоносителей (антифризов для отопления) Антифриз для отопления Как правильно разбавлять антифриз для системы отопления? Обнаружение и последствия протечек теплоносителей Как правильно выбрать отопительный котел Тепловой насос Особенности теплового насоса Тепловой насос принцип работы Запас мощности котла. Нужен ли он? Про радиаторы отопления Способы подключения радиаторов. Свойства и параметры. Как рассчитать колличество секций радиатора? Рассчет тепловой мощности и количество радиаторов Виды радиаторов и их особенности Автономное водоснабжение Схема автономного водоснабжения Устройство скважины Очистка скважины своими руками Опыт сантехника Подключение стиральной машины Полезные материалы Редуктор давления воды Гидроаккумулятор. Принцип работы, назначение и настройка. Автоматический клапан для выпуска воздуха Балансировочный клапан Перепускной клапан Трехходовой клапан Трехходовой клапан с сервоприводом ESBE Терморегулятор на радиатор Сервопривод коллекторный. Выбор и правила подключения. Виды водяных фильтров. Как подобрать водяной фильтр для воды. Обратный осмос Фильтр грязевик Обратный клапан Предохранительный клапан Смесительный узел. Принцип работы. Назначение и расчеты. Расчет смесительного узла CombiMix Гидрострелка. Принцип работы, назначение и расчеты. Бойлер косвенного нагрева накопительный. Принцип работы. Расчет пластинчатого теплообменника Рекомендации по подбору ПТО при проектировании объектов теплоснабжения О загрязнение теплообменников Водонагреватель косвенного нагрева воды Магнитный фильтр - защита от накипи Инфракрасные обогреватели Радиаторы. Свойства и виды отопительных приборов. Виды труб и их свойства Незаменимые инструменты сантехника Интересные рассказы Страшная сказка о черном монтажнике Технологии очистки воды Как выбрать фильтр для очистки воды Поразмышляем о канализации Очистные сооружения сельского дома Советы сантехнику Как оценить качество Вашей отопительной и водопроводной системы? Профрекомендации Как подобрать насос для скважины Как правильно оборудовать скважину Водопровод на огород Как выбрать водонагреватель Пример установки оборудования для скважины Рекомендации по комплектации и монтажу погружных насосов Какой тип гидроаккумулятора водоснабжения выбрать? Круговорот воды в квартире фановая труба Удаление воздуха из системы отопления Гидравлика и теплотехника Введение Что такое гидравлический расчет? Невязка гидравлического расчета Физические свойства жидкостей Гидростатическое давление Поговорим о сопротивлениях прохождении жидкости в трубах Режимы движения жидкости (ламинарный и турбулентный) Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе Местные гидравлические сопротивления Профессиональный расчет диаметра трубы по формулам для водоснабжения Как подобрать насос по техническим параметрам Профессиональный расчет систем водяного отопления. Расчет теплопотерь водяного контура. Гидравлические потери в гофрированной трубе Теплотехника. Речь автора. Вступление Процессы теплообмена Тплопроводность материалов и потеря тепла через стену Как мы теряем тепло обычным воздухом? Законы теплового излучения. Лучистое тепло. Законы теплового излучения. Страница 2. Потеря тепла через окно Факторы теплопотерь дома Начни свое дело в сфере систем водоснабжения и отопления Вопрос по расчету гидравлики Конструктор водяного отопления Диаметр трубопроводов, скорость течения и расход теплоносителя. Вычисляем диаметр трубы для отопления Расчет потерь тепла через радиатор Мощность радиатора отопления Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704 Расчет теплопотерь через ограждающие конструкции Найти теплопотери через чердак и узнать температуру на чердаке Подбираем циркуляционный насос для отопления Перенос тепловой энергии по трубам Расчет гидравлического сопротивления в системе отопления Распределение расхода и тепла по трубам. Абсолютные схемы. Расчет сложной попутной системы отопления Расчет отопления. Популярный миф Расчет отопления одной ветки по длине и КМС Расчет отопления. Подбор насоса и диаметров Расчет отопления. Двухтрубная тупиковая Расчет отопления. Однотрубная последовательная Расчет отопления. Двухтрубная попутная Расчет естественной циркуляции. Гравитационный напор Расчет гидравлического удара Сколько выделяется тепла трубами? Собираем котельную от А до Я... Система отопления расчет Онлайн калькулятор Программа расчет Теплопотерь помещения Гидравлический расчет трубопроводов История и возможности программы - введение Как в программе сделать расчет одной ветки Расчет угла КМС отвода Расчет КМС систем отопления и водоснабжения Разветвление трубопровода – расчет Как в программе рассчитать однотрубную систему отопления Как в программе рассчитать двухтрубную систему отопления Как в программе рассчитать расход радиатора в системе отопления Перерасчет мощности радиаторов Как в программе рассчитать двухтрубную попутную систему отопления. Петля Тихельмана Расчет гидравлического разделителя (гидрострелка) в программе Расчет комбинированной цепи систем отопления и водоснабжения Расчет теплопотерь через ограждающие конструкции Гидравлические потери в гофрированной трубе Гидравлический расчет в трехмерном пространстве Интерфейс и управление в программе Три закона/фактора по подбору диаметров и насосов Расчет водоснабжения с самовсасывающим насосом Расчет диаметров от центрального водоснабжения Расчет водоснабжения частного дома Расчет гидрострелки и коллектора Расчет Гидрострелки со множеством соединений Расчет двух котлов в системе отопления Расчет однотрубной системы отопления Расчет двухтрубной системы отопления Расчет петли Тихельмана Расчет двухтрубной лучевой разводки Расчет двухтрубной вертикальной системы отопления Расчет однотрубной вертикальной системы отопления Расчет теплого водяного пола и смесительных узлов Рециркуляция горячего водоснабжения Балансировочная настройка радиаторов Расчет отопления с естественной циркуляцией Лучевая разводка системы отопления Петля Тихельмана – двухтрубная попутная Гидравлический расчет двух котлов с гидрострелкой Система отопления (не Стандарт) - Другая схема обвязки Гидравлический расчет многопатрубковых гидрострелок Радиаторная смешенная система отопления - попутная с тупиков Терморегуляция систем отопления Разветвление трубопровода – расчет Гидравлический расчет по разветвлению трубопровода Расчет насоса для водоснабжения Расчет контуров теплого водяного пола Гидравлический расчет отопления. Однотрубная система Гидравлический расчет отопления. Двухтрубная тупиковая Бюджетный вариант однотрубной системы отопления частного дома Расчет дроссельной шайбы Что такое КМС? Расчет гравитационной системы отопления Конструктор технических проблем Удлинение трубы Требования СНиП ГОСТы Требования к котельному помещению Вопрос слесарю-сантехнику Полезные ссылки сантехнику --- Сантехник - ОТВЕЧАЕТ!!! Жилищно коммунальные проблемы Монтажные работы: Проекты, схемы, чертежи, фото, описание. Если надоело читать, можно посмотреть полезный видео сборник по системам водоснабжения и отопления
|